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The combined requirements of Diophantine quantization (integral or possibly 
half-integral solutions of mass equations) and collinearity (with respect to a 
rational quantum number which need not be specified explicitly) lead to 
limitations on heavy lepton masses, with four allowed values in the 13.3-16.9- 
GeV range. 

Diophantine quantization (Pease, 1970) postulates that equations in- 
volving particle masses must be solved in integers (or possibly half-integers), 
in analogy to the integer solutions (3,4,5), (5,12,13), etc., of the 
Pythagorean equation x 2 +y  2 = z 2. This principle yielded surprising results 
when applied to the Gell-Mann-Okubo equation (Gell-Marm, 1961; 1 
Okubo, 1962) for meson masses 

~r2 + 3v /2=  4 K  2 (1) 

for here the lowest nontrivial integer solution was (2, 8, 7), in close propor- 
tion to the respective particle masses (Bricman et al., 1978) of 135-140, 
549, and 494-498 MeV. This result also lentstrength to the proposal 
(Nambu, 1952) of a unit mass of 70 MeV(=mr and indicated 
perhaps that the Gell-Mann-Okubo equation was more fundamental than 
had been realized. 

It is also interesting that the massive leptons so far discovered,/t and 
~', have respective masses (Bricman et al., 1978; Fliigge, 1979) of 106 Mev 
and approximately 1782 MeV, quite close to 3 /2  and 51/2 multiples of 70 
MeV. 

The aim of this paper is to set up reasonable necessary conditions for 
the existence of leptons of higher mass and to predict the resulting allowed 

1The use of squared masses was suggested by R. P. Feynman. 
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spectrum. To do this it is useful to postulate that a set of particles 
possessing many properties in common obey Diophantine coUinearity, i.e., 
that (a) in a generalization of various extant mass relations, both from 
group theory and from strong-interaction dynamics, the s th powers of their 
mass numbers lie along the straight line 

m~=a+bZi  (2) 

where the Zi are quantum numbers, as yet unspecified, rational but with 
not too large a denominator, and that (b) only those few integral (or 
half-integral) values of the m i which happen to correspond to suitable 
values of the Z i can be associated with the set. 

Three such mass numbers give rise to the collinearity condition 

m~k-- m~ i Z k -  Zi 
m~ -- mS ---- Z j -  Z i (3) 

It is possible, if desired, to use standard number-theoretic methods to 
derive, for various values of the Z ratio on the right-hand side of (3), sets 
of solutions (m i, mj, rag). But here we shall be given an m i and an mj and 
asked to find suitable m~'s; to do this systematically, it is more useful to 
develop a few simple results of collinearity theory. 

Define a family F(m l, D, s) as the ordered set of those non_negative 
integers 0 < m I < m  E < ' ' '  which, for given integers mp D, and s, obey the 
relation 

m~, -- m~ -- O(mod D) (4) 

We note that 

F(ml ,  D, s) C F(ml ,  D'ID,  s) (5) 

where D' I D means "'D' is a divisor of D." 
With the help of a little elementary number theory (e.g., Hardy and 

Wright, 1960), we can derive three useful theorems about family member- 
ship, beating in mind that family membership does not guarantee physical 
existence: 

Theorem L If p is any integer such that pD + m >1 0, and m ~ F, 
then ( p D + m ) E F .  This has two consequences: (a) sequences of 
family members repeat themselves with periodicity D, and (b) 
each portion of the mass spectrum of width D has the same 
number of members, so the average permitted mass density is a 
constant. 
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Theorem 11. For  s even, if m ~ F, then (D - m) E F. 

Theorem 111. For s = 2, p and q positive integers, if m E F, q 12m 
andqZ[D,, then [(pD/q) + m] ~F. 

By doing a little systematic searching and using these theorems, it is 
not difficult to locate all members of a family, given m~, D, and s. 

We note that both the /t and ~- masses are very close to integral 
multiples of ( 3 / 2 ) x 7 0  MeV. Hence to apply our collinearity theorems, 
which for simplicity were derived on the basis of integral mass numbers, 
we set / ~ = m l x ( 3 / 2 ) •  MeV, z = m 2 x ( 3 / 2 ) x 7 0  MeV, which gives 
m I = 1, m 2 = 17; all resulting heavy lepton masses will be integral multiples 
of (3/2)  x 70 MeV. 

If we choose s = 2 for various theoretical and empirical reasons, we see 
from (4) that the largest possible value of D is 288. With this value, a brief 
systematic search and application of the collinearity theorems give the 
following as the next four allowed heavy lepton masses: 

127 x (3 /2)  x 70 MeV = 13,335 MeV (6a) 

143 x (3 /2)  x 70 MeV= 15,015 MeV (6b) 

145 x (3 /2)  x 70 MeV= 15,225 MeV (6c) 

161 x (3 /2)  X 70 M e V =  16,905 MeV (6d) 

The complete mass spectrum consists of the four sets of multiples (1 + 
144n), (17+ 144n), (127+ 144n), and (143+ 144n) of ( 3 / 2 ) x 7 0  MeV. It 
must be emphasized that these are allowed values and need not, on the 
basis of the theory so far developed, exist physically. 

It is of course quite possible to use a smaller D as long as it is a divisor 
of 288. From (5), we see that the masses in (6) are still permitted, but 
others may be also. For  the next lower value of D, 144, lower masses of 
5775, 7455, 7665, and 9345 MeV are also permitted, though if the lowest 
three, at least, were physical masses, it is quite possible that they might 
have been discovered already. 

The masses in (6) would correspond to quite high quantum numbers, 
with Z ratios, from (3), of 56, 71, 73, and 90, respectively, but such values 
could well appear from Casimir invariants of high-rank Lie algebras (e.g., 
Umezawa, 1963, 1964). 
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